### New Advances in Diabetes Management

Alice PS Kong
Associate Professor
Division of Endocrinology
Department of Medicine and Therapeutics
The Chinese University of Hong Kong
17 Jan 2009



## Traditional Approach to achieve glycemic control



#### Algorithm for the metabolic management of type 2 diabetes



Source: American Diabetes Association (ADA)/ The European Association for the study of diabetes ADA/EASD-2007 (EASD) 2006

### Pathogenesis of Type 2 Diabetes



Adapted from American Diabetes Association *Diabetes Care* 2004;27(suppl 1):S5–S10; Beers MH, Berkow R, eds. *Merck Manual of Diagnosis and Therapy*, 17th ed. Whitehouse Station, NJ: Merck Research Laboratories, 1999.

## Decline of $\beta$ -Cell Function in the UKPDS Illustrates Progressive Nature of Diabetes



HOMA=homeostasis model assessment

Adapted from Holman RR. Diab Res Clin Pract. 1998;40(suppl):S21-S25

## Potential causes of progressive beta-cell failure

- Genetically programmed apoptosis
  - May not have specific treatment
- Glucotoxicity and lipotoxicity
  - Cound not explain initial loss
- Insulin resistance
  - Long term insulin hypersectetion
  - Effect on beta-cell metabolism

### As Type 2 Diabetes Progresses...

- Pancreatic beta-cell function declines,
- Glycemic control deterioates,
- Intensified treatment increases hypoglycemia,
- Weight gain...

UKPDS 34. Lancet 1998; 352:854-865.

Kahn et al (ADOPT), New Engl J Med 2006; 355(23):2427-2443.

Lebovitz 1999; 7: 139-153.

## Traditional Pharmacological Agents for Diabetes

### Oral Anti-Diabetic Agents

|                                 | Improving<br>Insulin<br>Resistance | Improving<br>Insulin<br>Secretion | HbA <sub>1c</sub><br>Reduction |
|---------------------------------|------------------------------------|-----------------------------------|--------------------------------|
|                                 |                                    |                                   |                                |
| 傳統磺脲類药物<br>(sulphonylurea)      | 0/+                                | ++++                              | 1% to 2%                       |
| 格列奈(repaglinide)                | 0                                  | ++                                | 0.9 to 1.7%                    |
| 雙胍類 (biguanides)                | ++++                               | 0                                 | 1% to 2%                       |
| 格列酮类 (glitazones)               | +++                                | 0                                 | 0.5% to 1.3%                   |
| α-糖苷酶抑制剂<br>(α-glucosidase inh) | 0                                  | 0                                 | 0.5% to 1%                     |

Data from Henry. Endocrinol Metab Clin. 1997;26:553-573 - Gitlin, et al. Ann Intern Med. 1998;129:36-38 - Neuschwander-Tetri, et al. Ann Intern Med. 1998;129:38-41

Medical Management of Type 2 Diabetes. 4th ed. Alexandria, Va: American Diabetes Association; 1998:1-139 - Fonseca, et al. J Clin Endocrinol Metab. 1998;83:3169-3176 Data from Bell & Hadden. Endocrinol Metab Clin. 1997;26:523-537 - De Fronzo, et al. N Engl J Med. 1995;333:541-549 - Bailey & Turner. N Engl J Med. 1996;334:574-579

#### Differences among Current OAD

| Class                        | Primary<br>therapeutic<br>effect | Limitations                                |
|------------------------------|----------------------------------|--------------------------------------------|
| Sulfonylureas                | ↓ HbA <sub>1c</sub>              | Hypoglycemia, weight gain                  |
| Meglitinides                 | <b>↓</b> PPG                     | Hypoglycemia, weight gain                  |
| Biguanides (metformin)       | $oldsymbol{\Psi}$ HbA $_{1c}$    | GI adverse effects, lactic acidosis (rare) |
| PPARs                        | $oldsymbol{\Psi}$ HbA $_{1c}$    | Weight gain, edema, anemia                 |
|                              |                                  |                                            |
| Alpha-glucosidase inhibitors | V PPG                            | GI adverse effects                         |

Adapted from DeFronzo RA *Ann Intern Med* 1999;131:281–303; Williams G, Pickup JC, eds. *Handbook of Diabetes*. 3rd ed. Malden, MA: Blackwell Publishing, 2004; Holz GG, Chepurny OG *Curr Med Chem* 2003;10(22):2471–2483; Meneilly GS *Diabetes Care* 2003;26(10): 2835–2841; Ahrén B et al *Diabetes Care* 2002;25(5):869–875; Moller DE *Nature* 2001;414:821–828.

#### Differences among Current OAD

| Class | Effects on | beta-cells |
|-------|------------|------------|
|       |            | Deta etile |

Sulfonylureas Stimulation of insulin release;

beta-cell exhaustion over long-term exposure

Meglitinides Stimulation of insulin release;

beta-cell exhaustion over long-term exposure

Biguanides (metformin) No direct effects

PPARy agonists Indirect effects via improved insulin sensitivity;

evidence of recovery of function

Alpha-glucosidase Allow beta-cells time to augment insulin release;

inhibitors no direct effects

Adapted from Buchanan TA et al *Diabetes* 2002;51:2796–2803; Ovalle F, Bell DS *Diabetes Obes Metab* 2002;4(1):56–59; Wolffenbuttel BH, Landgraf R *Diabetes Care* 1999;22(3):463–467; DeFronzo RA *Ann Intern Med* 1999;131:281–303; Ahrén B *Curr Diab Rep* 2003;3:365–372; Drucker DJ *Expert Opin Invest Drugs* 2003;12(1):87–100; Buse JB et al. In: *Williams Textbook of Endocrinology*. 10th ed. Philadelphia: Saunders, 2003:1427–1483; Skrumsager BK et al *J Clin Pharmacol* 2003;43(11):1244–1256.

## New Pharmacological Agents for Diabetes

## Gut Hormone in Treatment of Diabetes

## The Incretin Effect Demonstrates the Response to Oral vs IV Glucose



Mean  $\pm$  SE; N = 6; \*p $\le$ .05; 0<sub>1</sub>-0<sub>2</sub> = glucose infusion time. Nauck MA, et al. Incretin effects of increasing glucose loads in man calculated from venous insulin and C-peptide responses. *J Clin Endocrinol Metab.* 1986;63:492-498. Copyright 1986, The Endocrine Society.

#### Incretin Hormones are Gastrointestinal Peptides

- Glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP) are the 2 major incretins in humans
- Both are peptide hormones (30 and 42 amino acids)
- Secreted from open-type endocrine cells (L- and K-cells, respectively) mainly in the distal (GLP-1, ileum, colon) or proximal (GIP, duodenum) small intestinal mucosa
- Released in response to meal ingestion



GLP-1 positive endocrine L-cells in human small intestine

## GLP-1 and GIP are 2 Major Incretins GLP-1 GIP

- Potentiates glucose-induced insulin secretion
- Upregulates insulin gene expression and all steps in insulin biosynthesis
- Upregulates expression of other genes essential for β-cell function
- Enhances β-cell proliferation and survival in animal models and isolated human islets
- Other effects:
  - ↓ hepatic glucose output by inhibiting glucagon secretion in a glucose-dependent manner
  - ↓ gastric emptying and appetite
  - ↓ food intake
  - ↓ body weight

- Potentiates glucose-induced insulin secretion
- Upregulates insulin gene expression and all steps in insulin biosynthesis
- Upregulates expression of other genes essential for  $\beta$ -cell function
- Enhances β-cell proliferation and survival in islets cell lines
- Does not inhibt glucagon secretion
- Minimal effects on gastric empyting
- No significant effects on appetite or body weight

### Postprandial GLP-1 Levels Are Decreased in Patients With IGT and Type 2 Diabetes



\*P < 0.05

#### The Incretin Effect is Reduced in Type 2 Diabetes

- Secretion of GLP-1 impaired
- B-cell sensitivity to GLP-1 decreased
- Secretion of GIP normal (or slightly impaired)
- Effect of GIP abolished or grossly impaired
- Inhibition of glucagon is impaired
- The loss occurs at even slight hyperglycaemia

Can metabolism be normalised if incretin function is restored by exogenous GLP-1?

## GLP-1 Actions are Glucose Dependent in Patients with Type 2 Diabetes



## The Therapeutic Potential of GLP-1 Is Limited by its Rapid Inactivation

Rapid inactivation (DPP-4), Short elimination half-life (~1-2 min)

GLP-1 must be administered continuously (infusion)

Inconvenient for treating a chronic disease like type 2 diabetes

# Current Strategies for Improving the Therapeutic Potential of GLP-1

- Agents that mimic the actions of GLP-1 (incretin mimetics)
  - ■DPP-4—resistant GLP-1 derivatives
    - Examples: GLP-1 analogues, albumin bound GLP-1
  - Novel peptides that mimic some of the glucoregulatory actions of GLP-1
    - ■Exenatide
- Agents that prolong the activity of endogenous GLP-1
  - ■DPP-4 Inhibitors

## Development of Exenatide: An Incretin Mimetic

Exenatide (Exendin-4)

Human

- Synthetic version of salivary protein found in the Gila monster
- Approximately 50% identity with human GLP-1
  - Binds to known human GLP-1 receptors on  $\beta$  cells *in vitro*
  - Resistant to DPP-4 inactivation



Exenatide HGEGTFTSDLSKQMEEEAVRLFIEWLKNGGPSSGAPPPS-NH<sub>2</sub>
GLP-1 HAEGTFTSDVSSYLEGQAAKEFIAWLVKGR-NH<sub>2</sub>

Site of DPP-4 Inactivation

Adapted from Nielsen LL, et al. *Regulatory Peptides*. 2004;117:77-88. Reprinted from *Regulatory Peptides*, 117, Nielsen LL, et al, Pharmacology of exenatide (synthetic exendin-4): a potential therapeutic for improved glycaemic control of type 2 diabetes, 77-88, 2004, with permission from Elsevier for English use only.

# Exenatide (Exendin-4) Remains in the Circulation Longer than GLP-1 - 50 nmol

→ 5 nmol



N = 4-7 (rats); p<.05. Adapted from Parkes D, et al. *Drug Dev Res.* 2001;53:260-267. Reprinted with permission from John Wiley & Sons, Inc.

## The Glucoregulatory Actions of Exenatide

## Exenatide Reduced Fasting Hyperglycaemia in Patients With Type 2 Diabetes

- --- Placebo
- Exenatide 0.05 μg/kg
- --- Exenatide 0.10 µg/kg



Mean (SE); N = 12; p<.0001 for glucose; p<.001 for insulin.

Adapted from Kolterman OG, et al. Synthetic exendin-4 (exenatide) significantly reduces postprandial and fasting plasma glucose in subjects with type 2 diabetes. *J Clin Endocrinol Metab.* 2003;88:3082-3089. Copyright 2003, The Endocrine Society.

# Exenatide Reduced Postprandial Hyperglycaemia in Patients With Type 2 Diabetes





Mean (SE); N = 109; p≤.004. Fineman MS, et al. *Diabetes Care.* 2003;26:2370-2377. Reprinted with permission from The American Diabetes Association.

#### Acute Exenatide Infusion Restored First-Phase Insulin Response in Patients With Type 2 Diabetes

- **→** Healthy Subjects, Placebo
- **→** Type 2 Diabetes, Placebo
- --- Type 2 Diabetes, Exenatide



# Exenatide Dose-Dependently Slowed Gastric Emptying Placebo 5 µg Exenatide BID



Least Squares Geometric Means shown. \*p<.01 vs placebo. Linnebjerg H, et al. *Diabetes*. 2006;55(Suppl 1):A28 Abstract 116-OR.

# Exenatide Reduced Glucagon Secretion in Type 2 Diabetes → Placebo Exenatide 0.10 μg/kg



N = 20; Mean (SE).

Adapted from Kolterman OG, et al. Synthetic exendin-4 (exenatide) significantly reduces postprandial and fasting plasma glucose in subjects with type 2 diabetes. *J Clin Endocrinol Metab.* 2003;88:3082-3089. Copyright 2003, The Endocrine Society.

#### Summary of Clinical Data

- Exenatide is a first-in-class incretin mimetic that shares several glucoregulatory actions with GLP-1:
  - Enhances glucose-dependent insulin secretion
  - Reduces postprandial glucagon levels
  - Slows gastric emptying rate
  - Reduces food intake and body weight
  - Beta cell effects
- In Phase III placebo-controlled trials, exenatide:
  - Lowered HbA<sub>1c</sub> ~1%
  - Reduced body weight 4-5 lbs
  - Demonstrated sustained effects in extension studies (2-year data)
- When compared to insulin, exenatide provides similar HbA<sub>1c</sub> improvements, with the potential advantages of tighter postprandial control and reduced body weight

### Summary of Safety Data:

- The most common adverse events associated with exenatide are mild-to-moderate gastrointestinal effects, most common at initiation of therapy
- Exenatide treatment is associated with low rates of hypoglycaemia
  - When co-administered with MET alone, exenatide was not associated with an increased risk of hypoglycaemia
  - ■When co-administered with an SFU, exenatide was associated with an increased incidence of hypoglycaemia compared to SFU alone
    - ■Generally manageable by reduction in SFU dose

# JANUVIA® (Sitagliptin) A Selective DPP-4 Inhibitor

#### **DPP-IV** Inhibitors: Overview

Mechanism of action

Inhibit degradation of incretins (e.g., GLP-1) resulting in

- Increased insulin release
- Decreased glucagon secretion
- Delayed gastric emptying
- Reduced food intake
- Potentially improved beta-cell function

Route of administration

Oral

Potential benefits

Preservation or restoration of beta-cell function

Durable glucose control

Adapted from Ahrén B *Curr Diab Rep* 2003;3:365–372; Schirra J et al *J Endocrinol* 1998;156(1):177–186; Meier JJ et al *Clin Endocrinol Metab* 2003;88(6):2719–2725; Holz GG, Chepurny OG *Curr Med Chem* 2003;10(22):2471–2483; Drucker DJ *Expert Opin Invest Drugs* 2003;12(1): 87–100; Gutzwiller JP et al *Am J Physiol* 1999;76(5 pt 2):R1541–1544; Drucker DJ *Endocrinology* 2001;142(2):521–527; Holst JJ, Deacon CF *Diabetes* 1998;47(11):1663–1670.

# Mechanism of Action of Sitagliptin



Incretin hormones GLP-1 and GIP are released by the intestine throughout the day, and their levels ↑ in response to a meal.
 Concentrations of the active intact hormones are increased by JANUVIA™ (sitagliptin phosphate), thereby increasing and prolonging the actions of these hormones.

## A Single Dose of Sitagliptin Increased Active GLP-1 and GIP Over 24 Hours

Crossover study in patients with T2DM



Placebo

#### **Active GLP-1**



**Hours Postdose** 

## Sitagliptin Consistently and Significantly Lowers A1C with Once-Daily Dosing in Monotherapy



\*between group difference in LS means

Raz I et al; PN023; Aschner P et al. PN021; Nonaka K et al; A201. Abstracts presented at: ADA 2006

## Sitagliptin: Provides Significantly and Progressively Greater Reductions in $HbA_{1C}$



## Sitagliptin Improved Markers of Beta-Cell Function: 24-Week Monotherapy Study



\*P value for change from baseilne compared to placebo Aschner P et al. PN021; Abstract presented at: American Diabetes Association; June 10, 2006; Washington, DC.

#### Sitagliptin Once Daily Significantly Lowers $HbA_{1C}$ When Added On to Metformin or Pioglitazone

#### **Add-On to Metformin Study**

 $\Delta$  in A1C vs Pbo\* = -0.65% (p<0.001)



#### Add-On to Pioglitazone Study \$\text{\Delta}\$ in A1C vs Pbo\* = \$\to\$0.70\% (p<0.001)



## Sitagliptin Added to Ongoing Metformin or Pioglitazone: Change in Body Weight Over Time



Karasik A et al. Presented at: The 66th Scientific Session of the American Diabetes Association; June 11, 2006; Washington, D.C. Abstract 020. Rosenstock J et al. Presented at: The 66th Scientific Session of the American Diabetes Association; June 11, 2006; Washington, D.C. Abstract 019.

## 24-week Add-on Therapy to Metformin Study Measures of Beta-cell Function at Week 24



 $Baseline:\ proinsulin\ to\ insulin\ ratio\ (sitagliptin=0.357\ pmol/L/pmol/L,\ placebo=0.369\ pmol/L/pmol/L),$ 

HOMA- $\beta$  (sitagliptin = 46.4%, placebo = 45.1%)

All-patients-as-treated population

LSM = least square mean; HOMA- $\beta$  = homeostasis model assessment- $\beta$  Adapted from Charbonnel et al. *Diabetes Care*. 2006;29:2638–2643.

## 24-week Add-on Therapy to Metformin Study Number of Patients With Selected GI-related AEs

|                | Sitagliptin 100 mg<br>(n=464) |       | Placebo<br>(n=237) |       |
|----------------|-------------------------------|-------|--------------------|-------|
|                | n                             | (%)   | n                  | (%)   |
| Abdominal pain | 10                            | (2.2) | 9                  | (3.8) |
| Diarrhea       | 12                            | (2.6) | 6                  | (2.5) |
| Nausea         | 6                             | (1.3) | 2                  | (0.8) |
| Vomiting       | 5                             | (1.1) | 2                  | (0.8) |

All-patients-as-treated population

GI = gastrointestinal

Adapted from Charbonnel et al. Diabetes Care. 2006;29:2638-2643.

### 24-week Add-on Therapy to Metformin Study Incidence of Hypoglycemia



### 52-Week Sitagliptin vs Glipizide Add-on Therapy to Metformin Study

#### **Change in Body Weight Over Time**<sup>a</sup>





\*All-patients-as-treated population; batients with at least one episode; all-patients-treated population
LSM between-group difference at week 52 (95% CI): ∆ in body weight = −2.5 kg [−3.1, −2.0] (P<0.001);</p>

LSM change from baseline at week 52: glipizide: +1.1 kg; sitagliptin:  $-1.5\ kg$ 

Diabetes, Obesity and Metabolism, 9, 2007, 194-205

### Summary: Sitagliptin

- Orally active, 100 mg once daily
- Generally well tolerated
- Low incidence of hypoglycemia (1.2% vs 0.9%)
- Weight neutral
- Efficacy: reduce fasting and postprandial blood glucose, lowers HbA1c 0.6 to 1%
- Current approved indications for type 2 DM:
  - Monotherapy, or
  - Add-on therapy to sulfonlyureas, metformin or glitazone
  - Combination with metformin and a sulfonylurea
- No significant drug interactions

### Patients With Renal Insufficiency

| Renal<br>Insufficiency                                   | Mild                                        | Moderate         | Severe and<br>ESRD* |
|----------------------------------------------------------|---------------------------------------------|------------------|---------------------|
| Increase in<br>Plasma AUC of<br>Sitagliptin <sup>†</sup> | ~1.1 to 1.6-fold increase‡                  | ~2-fold increase | ~4-fold increase    |
| Recommended<br>Dose                                      | 100 mg<br>no dose<br>adjustment<br>required | 50 mg            | 25 mg               |

To achieve plasma concentrations similar to patients with normal renal function, lower doses of JANUVIA® (sitagliptin phosphate) are recommended in moderate and severe renal insufficiency.

ESRD=end-stage renal disease; AUC=area under the curve.

<sup>\*</sup>Includes patients on hemodialysis or peritoneal dialysis.

<sup>&</sup>lt;sup>†</sup>Compared with normal healthy control subjects.

<sup>&</sup>lt;sup>‡</sup>Not clinically relevant.

# What is the difference between DPP-IV Inhibitors and Exenatide

|                         | Sitagliptin | Exenatide |
|-------------------------|-------------|-----------|
| Route of administration | p.o.        | s.c.      |
| GLP elevation           | 2-4 fold    | 10 fold   |
| HbA1c reduction         | -0.7%       | -1.1%     |
| Weight effects          | neutral     | -4.7 kg   |
| Hypoglycemia potency    | none        | none      |
| B-cell protection       | possible    | possible  |

## Type 2 diabetes and CV risk

### Type 2 diabetes is NOT a mild disease

#### **Diabetic** retinopathy

Leading cause of blindness in working-age adults1



Leading cause of end-stage renal disease<sup>2</sup>







#### **Stroke**

1.2- to 1.8-fold increase in stroke<sup>3</sup>



#### Cardiovascular disease

75% diabetic patients die from CV events<sup>4</sup>



#### **Diabetic** neuropathy

Leading cause of non-traumatic lower extremity amputations<sup>5</sup>



Leading cause of amputation

<sup>1</sup>Fong DS, et al. Diabetes Care 2003;26 (Suppl. 1):S99–S102. <sup>2</sup>Molitch ME, et al. Diabetes Care 2003;26 (Suppl. 1):S94–S98. <sup>3</sup>Kannel WB, et al. Am Heart J 1990;120:672–676. <sup>4</sup>Gray RP & Yudkin JS. In Textbook of Diabetes 1997. <sup>5</sup>Mayfield JA, et al. Diabetes Care 2003;26 (Suppl. 1):S78–S79.

# Metabolic Syndrome or Insulin Resistance Syndrome



#### $\overline{ABC + 2A + 2S}$

- HbA1c
- Blood Pressure
- Cholesterol (Low density lipoprotein cholesterol)
- + Aspirin
- + ACEI or ARB
- + Stop Smoking

#### Effects of Treatment Targets on Subsequent Cardiovascular Events in Chinese Patients With Type 2 Diabetes

ALKE P.S. KONG, PROP<sup>1,2</sup>
XILIN YANG, PROP<sup>1</sup>
GARF T.C. NO, ND<sup>3</sup>
WING-YIE SO, PROP<sup>2,4</sup>
WING-BUN CHAN, PROP<sup>2,4</sup>
RONALD C.W. MA, MROP<sup>2</sup>

VANESA W.S. NG, NBCP<sup>2</sup>
CHON-CHONG CHOW, FECP<sup>2</sup>
CLIVE S. COCERAN, ND<sup>2</sup>
PITTE C.Y. TONG, IND<sup>2</sup>
VIVIAN WONG, ND<sup>3</sup>
JULIANA C.N. CHAN, ND<sup>2</sup>

Hong Kong Diabetes Registry. Diabetes Care 2007; 30:953-959

- Between 1995 and 2005, 6,386 Chinese type 2 diabetic patients without history of CHD or stroke were recruited.
- Classified according to the number of treatment targets attained at baseline, and their cardiovascular outcomes were compared.

### ABC targets in Hong Kong T2DM



Number of Treatment Targets Attained at baseline

Kong AP, et al. Diabetes Care 2007



Attainment of 2 or more treatment targets at baseline was associated with reduced risk of CHD compared with those with no target achieved.

