ZHONGSHAN HOSPITAL XIAMEN UNIVERSITY

$$
\begin{gathered}
\text { 肝脏三维成像系统与 } \\
\text { 精准肝脏切除术 }
\end{gathered}
$$

Three－dimensional liver imaging system and precise hepatectomy

度へ大＂3附属中山医院

尹震宇

Contents

1．Concept of the precise hepatectomy

2．3D liver image system and living donor liver Try

3．3D liver image system and liver tumor resection

1．Concept of the precise hepatectomy

Pernirvinutu

पष
4mminnimin
自强㮩比毛善

(4)
 Complexity of the liver

Vessels Variant

Hepatic vein

Portal vein

Modern Image System

Modern Image System

wouruorzu

（6）
 Modern Image System

搭
MRI and MRCP 自强标息じ手を善

Methods for Hepatectomy

Vascular Exclusion Methods

(4)
 Methods for Hepatectomy

Instruments for liver resection

精准肝脏外科手术 （Conception）

 AIM：

 AIM：}

通过对肝脏手术：

- 精确术前评估
- 精密手术规划
- 精工手术操作
- 精良术后处理
－最小创伤唚袭
（minimal invasiveness）
－最大肝脏保护
（maximal liver－saving）
－最大效费比率
（maximal effect／cost ratio）
－最佳康复效果
（maximal outcome）

Application：1．Living donor liver transplantation
2．Liver tumor resection
自强示息心于手喜

2．3D liver image system and living donor liver Try

The technique of 3D liver image

Case report（video）

The technique of 3D liver image

3D Image System Based on CT－Scan

CT Data Parameters：

－Slice thickness 2.5 mm ，reconstruction interval1． 25 mm
－Contrast： 180 ml non－ionic contrast agent，injection rate $6 \mathrm{ml} / \mathrm{s}$
－Contiguous slices covering the whole organ
－No breathing artifacts or movement of the patient
－All phases are acquired at a similar breathing position
－Minimal or no beam hardening artifacts or artifacts due to foreign bodies such as stents or drains
－Resolution in plane（ x and y ）$<=1.0 \mathrm{~mm}$

Arterial Phase

- Slice Thickness <= 1.5 mm
- Reconstruction Interval <=1.5 mm
- Tolerable image noise, i.e. standard deviation of density of liver parenchyma in a region of interest not including the tumor less than or equal to 20 HU
- Mean density in a main branch of the hepatic arteries at least 30 HU higher than mean density of liver parenchyma as measured above
- Portal vein only slightly contrasted.
- Bile ducts not contrasted simultaneously

Venous Phase (Portal and Hepatic Veins)

- Slice Thickness <= 2.0 mm
- Reconstruction Interval <=2.0 mm
- Tolerable image noise, i.e. standard deviation of density of liver parenchyma in a region of interest not including the tumor than less or equal to 20 HU
- Mean density in the main portal vein or a major hepatic vein at least 30 HU higher than mean density of liver parenchyma as measured above
- Hepatic arteries or bile ducts not contrasted simultaneously

Different CT Phase

Arterial
Phase

Venous Phase

Biliary
Phase
E．
自强示息心于手黄

Image Analysis for Living Donor Liver Transplantation

- Vascular Analysis

- Vascular Territories
- Resection Planning
- Risk Analysis

Vascular Analysis

Analysis of the portal vein．The main branches are coded by different colors and are labeled similar to Couinaud＇s scheme

Analysis of the hepatic veins．The right hepatic vein，left hepatic vein and inferior hepatic veins are coded as one vascular branch．The middle hepatic venous branches are further divided since this is essential for the risk analýsis号小息心手を考

Vascular Analysis

Patient individual hierarchical analysis of the hepatic arteries． The main branches are coded by different colors to allow for easy identification．

Patient individual hierarchical analysis of the bile ducts．The major bile ducts can easily be identified．The branching pattern of the bile ducts is normal．
自强示息心まき。

Vascular Analysis

The portal vein，hepatic arteries and bile ducts are displayed together．All of these vascular systems were extracted from different phases of the CT．The results were： registered to compensate for different positioning of the potential donor or different breathing positions．
自强示息じ干を善

Vascular territories

Vascular
Territory
I
II
III
IVa
IVb
V 207
VI
VII
VIII
Total

Volume
 (in ml)

43
156
172
172
58

217
259
448
1732 (100.0\%)

Vascular territories

Vascular Territory

LHV

MV4a
MV4bi

MV4bs
MV5i
MV5s
MV8d 16

Volume

Volume
(in ml)

350

39
41

6915892

(relative)
(\% of total)
(20.2\%)
($2.3 \%)$

Vascular territories

Vascular territories

Volumetry of the Biliary Drainage Territories

Vascular Territory	Volume (in ml)	(relative) (\% of total)
B2	240	(13.9%)
B3	175	(10.1%)
B4	127	(7.4%)
B5	85	(4.9%)
B6	600	(34.7%)
B7	161	3
B8	343) (179.8\%)
Total	1732	

Resection Planning1

Resection Proposal 1: Leaving the Middle Hepatic Vein with the Donor

Vascular
Territory

Graft

Remnant
(relative)
(\% of total)
(61.4%)
(37.8%)

Resection Planning 1

A typical resection proposal is shown with the resection surface to the right of the middle hepatic vein．The graft is displayed together with the hepatic veins．

The same resection proposal is shown with the portal vein．No major branches except for the right portal vein will have to be transected according to this proposal．

The graft is shown together with the portal vein，the hepatic arteries，and the bile

自强小息じ干を善

Resection Proposal 2: Including the Middle Hepatic Vein in the Graft
 Territory

Volume
(in ml)

1245

473

1732 (100.0\%)

(4) Case report (video)

living donor liver transplantation

Donor

Recipent

Portal vein system

Hepatic vein system

（4）Bile duct image－－－X ray

自强示息比于を旁

Cutting plan 1

Territory	$\begin{aligned} & \text { Volume } \\ & \text { (in ml) } \end{aligned}$	(relative) (\% of total)
EV1	1	(0.1\%)
MV4b	1	(0.1\%)
MV5	53	(7.5\%)
Mv8i	47	(6.68)
Mv8s	2	(0.38)
Rav	607	(85.4\%)
Total	711	(100.08)

Volumes
 Volume
 (in mi)

Graft	711	(63.9\%)
Remnant	392	(35.2\%)
Cutting Plane	10	0.9\%)
Total	1113	(100.0\%)

Cutting plan 2

Territory	Volume (ln ml)	(relative) (\% of total)
EV1	23	(6.8\%)
LEV	236	(70.28)
MV4a	50	(14.9\%)
2V4b	22	(6.5\%)
MV5	4	(1.2\%)
Rav	1	(0.3\%)
Total	336	(100.0\%)

Volumes
Volume
(in mi)

(relative
of total

Total $1.112 \quad(100.0 \%)$?

3．3D liver image system and liver tumor resection

The technique of 3D liver image

Case report（video）

自强小息心于を善

 XMQB Liver 系统

 XMQB Liver 系统}

中华人民＂共和国
 PEOPLE＇S REPUBLIC OF CHINA

医疗器械注册证
REGISTRATION CERTIFICATE FOR MEDICAL DEVICE

注册号：闽食药监械（准）字2011第2700065号

厦门强本科技有限公司：
你单位生产的肝癌手术模拟软件（型号规格：XMQB－Li ver V2．0），经审查，符合医疗器械产品市场准入规定，准许注册。自批准之日起有效期四年。特此证明。

附件：医疗器械注册登记表

The technique of 3D liver image

3D Image System Based on CT-Scan

CT Data Parameters:

- Slice thickness 2.5 mm , reconstruction interval1. 25 mm
- Contrast: 180 ml non-ionic contrast agent, injection rate $6 \mathrm{ml} / \mathrm{s}$
- Contiguous slices covering the whole organ
- Data in DICOM format
- No breathing artifacts or movement of the patient
- All phases are acquired at a similar breathing position
- Minimal or no beam hardening artifacts or artifacts due to foreign bodies such as stents or drains
- Resolution in plane (x and y) $<=1.0 \mathrm{~mm}$

Imaging Parameters

－Contiguous slices covering the whole organ
－Data in DICOM format
－Gantry－Tilt：No tilt
－No breathing artifacts or movement of the patient
－All phases are acquired at a similar breathing position
－Minimal or no beam hardening artifacts or artifacts due to foreign bodies such as stents or drains
－Resolution in plane（ x and y ）$<=1.0 \mathrm{~mm}$

Imaging Parameters

1．Slice Thickness＜＝ 2.0 mm
2．Reconstruction Interval $<=2.0 \mathrm{~mm}$ 3．Mean density in the main portal vein or a major hepatic vein at least 30 HU higher than mean density of liver parenchyma
4．Portal vein only slightly contrasted 5．Hepatic arteries or bile ducts not contrasted simultaneously

1．Slice Thickness＜＝ 1.5 mm
2．Reconstruction Interval＜＝1．5 mm
3．Mean density in a main branch of the hepatic arteries at least 30 HU higher than mean density of liver parenchyma
4．Portal vein only slightly contrasted
5．Bile ducts not contrasted simultaneously自强小息じきを

ZHONGSHAN HOSPITAL XIAMEN UNIVERSITY

XMQB－Liver 3D Image System

Arterial Phase
Venious Phase

$\left(\begin{array}{l}\text {（2）} \\ 5)\end{array}\right.$

（4） Step 2： Artery Harvest

	件（F）编缕（E）	帮勖（H）
肝头质		
蜰 疾		
\square 柯 湤 \square 3）		
	F 成	28
擋隹		
夌		

$$
\mathrm{W}: 255 \quad \mathrm{C}: 130
$$

（axal

（4）Step 3： Portal Vein Harvest

	件（F）编輯（E）	帮勖（H）
		$1 \longdiv { 4 }$
祭字脌		
肝至质		
］蜰 癁		
\square ล1 6		
$\square \text { 简 } 5$		
\square 门］脉 \quad 3		
保		
兊		

Location：70 326
$\mathrm{~W}: 255 \quad \mathrm{c}: 130$

（4）Step 4：Hepatic Vein Harvest

38

TR $\longrightarrow \mid$ W：255 $\quad \mathrm{c}: 130$

	肝要质	88
	肿 痛	3． 9
	तat 5	88
	）	88
\square	（1） 838	82
，	17x	88

筫作

［30
国
8

vessel and tumor

肝动脉

肿瘤

肝静脉

肝门脉

下腔静脉

（4）
 Mixed

exw
自强示息比于を旁

Mixed

P

(6)
 Operation Photo

Operation Photo

Ligamentum Venosum
Left portal vein

Case report：Large HCC Resection（video）

General Information

1．Male， 50 yrs ，No HBV history
2．HCG－15mins 7\％；Child－Pugh：
Grade A；MELD score：12
3．Normal Liver Function

> 自强䅐代毛善

(3
 CT-A

（4）3D Image of the liver and tumor

完整肝加血管三维重建

Resection and Risk Analysis

The Tumor

size

weight

肝㢈肿物切除标本：

后改变，肝脏切獍阴性，癌周肝组织轻度慢珄炎症

Summary

－在现代医学理论和现代技术条件支持下的精准肝脏切除术是一种采用最小的创伤侵袭，最大保存肝脏组织并获取最佳治疗效果的肝脏外科技术。
－采用3D成像技术可以有效地将肝脏二维局部平面图像以三维整体立体结构清楚呈现，为精准肝脏切除手术的术前计划，安全评估提供重要的保证。

Campus of Xiamen University

Department of Hepatobiliary Surgery，Zhongshan Hospital，Xiamen University E－mail：yinzy＠xmu．edu．cn TEL： 13950120518

